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Abstract. Many global optimization problems can be formulated in the form 

min{c(x, y) : x E X, y E Y, (x, y) E Z, y E G} 

where X, Y are polytopes in ~P, R '~ , respectively, Z is a dosed convex set in R p+'~ , while G is the 
complement of an open convex set in ~ .  The function c:]~ ~'+'~ ~ ~ is assumed to be linear. 

Using the fact that the nonconvex constraints depend only upon the y-variables, we modify and 
combine basic global optimization techniques such that some new decomposition methods result 
which involve global optimization procedures only in ~'~. Computational experiments show that the 
resulting algorithms work well for problems with small n. 

Key words: Global optimization, decomposition, canonical d.c. program, conical branch and bound 
algorithms, outer approximation, cutting plane algorithms. 

1. Introduction 

Let X,  Y be polytopes (bounded polyhedral sets) in ~+, ~ ,  respectively, and 
let G be the complement of an open convex set in R ,~ . Further, let Z be a closed 
convex set in ~p+n and c: R p+'~ -+ R a linear function. We consider the global 
optimazation problem 

(P) min{c(x ,y) 'x  E X , y  E Y,(x,y) E Z,y E G}. 

Problem (P)  includes several important classes of global optimization problems. 
As examples let us consider the problems 

(P1) min{f(u)  - g ( v ) ' u  E U,v E V,(u,v) E W}, 

where U, V are rectangles in ]~ n l  , ]~ n2  , respectively, W is a convex set in ]~nl +n2, 
and f ,  g are convex functions defined on It ~1 , 1~ '~z , respectively, and 

n 

(/~ min{f(x)  : x  E U, I I g ~ ( x  ) _< 1}, 
i= l  

where U is a convex set in t~p, f is a linear function and 9~(i = 1, . . . ,  n) are 
positive convex functions defined on U. 

In Problem (P1) the objective function is a separated d.c. function (difference 
of two convex functions). Frequently, (P1) is called d.c. programming problem 
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(cf., e.g., Horst and Tuy, 1993). An interesting special case arises when f is a 
linear function and nl  is much larger than n: .  Problem (P2) belongs to a class 
of programs dealing with a so-called multiplicative terms, which have recently 
attracted the attention of several authors because of its wide range of applications 
(cf., e.g., Muu, 1993; Thach, Burkard, and Oettli, 1991; Thoai, 1993; Tuy, 1992). 

By introducing two additional variables, tl ,  tl in (P1) and n additional variables, 
yl," �9 �9 Y,~ in (Pa), we can transform these problems into the form (P) as follows: 

(P1) t m i n { t l - t 2  : ztEU~vEV~ (lz, v) EW~ f ( t t ) - t  1 <0 ,  g (v ) - t2_<0} ,  

and 

(P2)' m i n { f ( x )  : x E U, g i (x )  - Yi < 0,( i  ---- 1 , . . . , n ) , I I  Yi _~ 1}. 
i=1 

Since in (P1)' the function g(v)  - t2 is convex, we have G = {(v, t2) : g(v)  - 
t2 _> 0}, and since in (P2) I the function 1-I~=1 Yi is quasi-concave we can define 
G = { ( Y l , " " ,  Yn) : I-in=l yi _< 1}. 

Problem (P) belongs to a class of nonconvex programming problems called 
canonical d.c. programs, and the constraint y E G is often called reverse convex 
constraint. A collection of results on canonical d.c. programs can be found in the 
book of Horst and Tuy (1993). However, it is a matter that up to now the existing 
methods for solving canonical programs can only work successfully on problems 
with small size ( p + n  < 10). In view of the special structure of Problem (P) that the 
reverse convex constraint depends only upon the y-variables, we intend to modify 
and combine basic global optimization techniques such that new decomposition 
algorithms result which use global optimization procedures only in the y-space. 
This gives hope to handle effectively the often occuring cases where the whole 
size of a problem under consideration may be fairly large while the number of 
nonconvex variables is small. 

In this article we present two realizations of the above idea. In Section 2 we 
propose conical branch and bound techniques and polyhedral outer approximation, 
whereas the second approach, which we develop in Section 3, relies on cutting 
plane techniques. Throughout this article we need the following assumptions. 

(i) int f~ r 0, where f~ = ( (x ,y)  : x E X , y  E Y,(x ,y)  E Z}, 

( i i)  a point yO E I ( ~ \ G  is available. 

(1.1) 

Assumption (i) is usually needed for polyhedral outer approximations of a convex 
set. It is worth noting that a point y0 satisfying (ii) can be determined independently 
of the structure of the set fL For establishing the cutting plane algorithm in Section 
3, Assumtion (i/) must be replaced by a more strict condition. 

Numerical examples to illustrate these algorithms are given in Section 4. 
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2. A Branch and Bound Algorithm 

As usual, every algorithm of branch and bound type consists of two basic oper- 
ations: branching and bounding. In our algorithms we need an additional basic 
operation for the successive outer approximation of the compact convex set f~ by 
a sequence of polytopes. We begin to establish our algorithm for solving Problem 
(P)  with these basic operations. 

2.1. POLYHEDRAL PARTITIONS 

Let y0 be a point in ~'~. A collection {C1, . . . ,  C~} of subsects of ~n is called a 
conical partition of ~n, if each set Cj (j = 1 , . . . ,  r) is a convex polyheral cone of 
dimension n, having exactly n edges emanating from y0, such that [-J~=l Cj = 1~ 
and int Cj n int Ci = 0 for j ~ i. Throughout this article, by a cone or conical 
partition set in R n we always mean a convex polyhedral cone having the above 
structure. The conical partition {C1, �9 �9 �9 C~} of a cone C is defined similarly (cf. 
e.g., Horst and Tuy, 1993; Horst, Thoai, Benson, 1991; Horst and Thoai, 1992). 

A collection {F1 . . . ,  F~} of subsets of ~p+n is called a C-partition of ~P+~, if 

x C j ( / =  1,...,,,), (2.1) 

and {Ci, �9 �9 C~} forms a conical partition in 1~'~. The sets Fj are called C-partition 
sets. A C-partition of an element of a C-partition is defined similarly by using a 
conical partition of the corresponding cone C, i.e., we say that the collection 
{F1 , . . . ,  F~}, forms a C-partition of F = ~P • C, where C is a cone, if Fj = 
I~p • Cj,  (j = 1 , - . . ,  r),  and {C1,. �9 Cr }, forms a conical partition of C. 

In the context of conical branch and bound algorithms in ~ ,  at the beginning of 
an algorithm, the space ~n is usually divided into n + 1 cones, and a first collection 
of r < n + 1 of these cones is chosen such that its union contains the set Y. 
Thereafter, at each iteration a cone is divided into finitely many subcones using 
certain standard partition rules. For more details on various conical partition rules 
we refer, e.g., to Horst and Tuy (1993), Horst, Thoai, and Benson (1991), Horst 
and Thoai (1992), see also the numerical example in Section 4. 

For convergence proofs of conical algorithms, the most useful characteriza- 
tion of a partition process is the concept of exhaustiveness. A nested subsequence 
{Cq}, Cq D Cq+l~/q, is called exhaustive if the intersection nq~__lCq is a ray (a 

hairline emanating from a point y0). A conical partition process is called exhaus- 
tive if every nested subsequence of cones generated throughout the algorithm is 
exhaustive. A typical example for exhaustive partition processes is the well-known 
bisection process. Other classes of exhaustive partitions are discussed in Tuy, 
Khachaturov, and Utkin (1987), Horst and Tuy (1993), Horst, Thoai, and de Vries 
(1992 and 1992a). 
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2.2. LOWER BOUNDS 

Let C be a conical partition set in 1~ '~, i.e., C is a polyhedral convex cone of 
dimension n having n edges emanating from a point y0 E R ~  and let P be a 
polytope in 1~_+~ which contains the convex set f~ defined in (1.1). We propose 
here a procedure for computing a lower boun d # of the linear function c(x, y) over 
the set {(x, y) E ~p+n : (x,  y) E gt fq F, y E G},  where F - C x R p. Recall that 
in Problem (P)  the set G is the complement of an open convex set in R n . 

Assume that the polytope P is described as the solution set of the system 

A x  + B y  < d (2.2) 

where A, B and d are matrices and vector, respectively, of appropriate sizes. 
Note that, by Assumption (ii), the point y0 satisfies y0 ~ G. For each i = 

1 , . . . ,  n, let v i 7 ~ y0 be a point on the i - th  edge of C, and let z i be a point on 
this edge determined by 

z ~ = yO + O(v i _ yO) with 0 = min{01 : sup{)~ �9 yO + )~(v i _ yO) ~ G}}, 

(2.3) 

where 01 is a given positive (usually large) number. Then every point (x, y) E F 
is uniquely representables as 

p n 

(x,y)  = (o ,y ~ + + z') 
i=1 i=1 

-(0P,  y~ )~i _> 0(i = 1, . . .  ,n)  (2.4) 

where 0 p is the origin of N p, and e i is the i - th  unit vector of RP+~ (i = 1 , . . .  ,p). 
Denoting by U the matrix with n columns (z 1 - yO), . . . ,  (z ~ _ yO) we can write 

(2.4) in the form 

(x, y) = (op, yo) + (4, > 0 (2.5) 

where a = ( (~1, ' " ,  O~p) and A = ( A I , ' " ,  A~). The computation of the lower 
bound # is based on the following 

THEOREM 2.1. Let the linear function c(x, y) be defined by c(x,  y) = cPx + cny, 
where c n �9 Ir n and c p �9 R p. Then the number 

# = # ( C , P )  

= cny ~ + min{cP~ + cnUA : Ao~ + B U A  
n 

< d - B y  ~ ~ A~ > 1, o~ �9 1~_, ~ �9 R~ } (2.6) 
i=1 

is a lower bound of  c(x, y) over the set {(x,y)  : ( x , y )  �9 fl  r F , y  E G}. (We 
understand that It = c~, i f  the linear program in (2.6) has no feasible solution.) 
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Proof  Let H n be the hyperplane in R n containing the n point zl, . . .  , z n and 
let H = H '~ x R p. Let H+ be the haffspace generated by H which does not contain 
the point (0 p, y0). First, we assert that 

{(x, y) : (x, y) � 9  y �9 G} C { (x ,y ) :  (x,y) �9 F N H + } .  

Indeed, by definition, the sets H and H+ are described as 
n 

g = { (x ,y ) :  (x ,y)  = (OP, y ~ + ((~,U)~),a �9 RP,~ �9 ] ~ _ , ~ h i  = 1]} 
i=1  

and 
n 

H+ = { ( x , y ) ' ( x , y )  = (0P, y ~ + (a, U)~), a �9 lOP, )~ �9 ] ~ ,  ~ ) ~ i  >_ 1. 
i = l  

Let (x, y) be any point of F such that y �9 G. Since yO ~ G and the complement, 
G, of G is convex it follows that the line segment [y, yO] intersects the boundary 
OG of G at an unique point 9 and meets H at an unique point ~) and we have 
9 �9 [9, y0]. This implies that (x, 9) �9 H+,  and hence (x, y) �9 F n H +. 

From the above assertion we see that 

# = m i n { c ( x , y ) ' ( x , y )  �9 P N F N H + }  

_< min{c(x, y)" (x, y) �9 P n F, y �9 G} 

_< min{c(x, y)" (x, y) �9 ~2 n F, y �9 G} (2.7) 

Note that P C ~++n, and 

~_+'~ n H+ n F = { (x ,y )  �9 (x ,u)  = (o ,u ~ + u a ) ,  
n 

i----1 

Therefore, it follows from (2.2) that 

# = m i n { e ( x , y ) ' ( x , y )  e P A F N H + }  

= min{cny ~ + cPo~ + cnU1 �9 Aot + B U ~  < d - B y  ~ 
n 

i = l  

= d~y ~ + min{c~a + r : A s  + BUA <_ d - B y  ~ 
71, 

i = l  

(2.8) 

[] 

REMARK. If C ~ is a conical partition set such that C I C C and PI is a polytope 
such that f~ C P '  C_ P,  then we obviously have #(C',  P')  >_ #(C, P). If an 
optional solution (6, ~) of the linear program in (2.6) satisfies 

(~.(C), 9(C)) = ( 0  p, yO) + (5~, U~) E ~ n G, (2.9) 
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then #(C,  P )  - c(.~(C), ~3(C)) is also an upper bound of the optimal value of 
Problem (P). Therefore, in the context of a branch and bound algorithm, the 
partition set C can be immediately removed from further consideration. 

If (2.9) does not hold, we will be interested in the point (.~(C), ~3(C)) defined 
by 

(5:(C), ~(C)) = (~(C),y ~ + O((~(C),~(C))-  (~(C),y~ (2.10) 

where 

0 = min{01; sup{t : yO + t(~(C) - yO) r G}} (2.11) 

with 01 being a given positive (usually large) number (cf. (2.3)). Geometrically, 
9(C) is the unique intersection point of the ray emanating from y0 through ~(C) 
with the boundary OG of G, if this intersection point exists; otherwise, it is a point 
on this ray that stands far enough from y0. So, we see that the computation of the 
point (2 (C), 9(C)) requires only operations in R ~. If 

(~'(C), 9(C)) E a ,  (2.12) 

then c(~ (C), ~)(C)) can be used to improve the current upper bound of the optimal 
value c* of Problem (P).  

2.3. APPROXIMATION BY POLYTOPES 

From the description of Problem (P) we see that the set P1 = X x Y is the polytope 
in 1~ p+~ which contains the bounded convex set f~. Within our algorithm a sequence 
{Pk}, k = 1, 2 , . . .  will be iteratively constructed satisfying P1 D P2 D . . .  D f~. 
This approximation process needs the following basic operation: 
Given a polytope P in l~p+~ satisfying P D f~ and P\f~ --/: O, construct a polytope 
t5 satisfying P D P D f~. 

To our purpose we assume that the set f~ is defined by 

a = {(x, r y) < o} (2.13) 

where r y) is a convex function usually defined as the maximum of a finite 
family of convex functions on the set/:'1 = X • Y. 

Let C be a conical partition set as described in Section 2.1. Assume that in the 
lower bound estimation procedure of Section 2.2 we obtained a point (~, Y) which 
does not satisfy (2.9), (recall that whenever (2.9) is fulfilled, the partition set C is 
remox~ed from further consideration). The polytope 15 can be constructed by using 
(2, ~3) as a so-called approximation point as discussed in the following two cases. 
(a) If (~, Y) E f~, then set t3 +_ p .  
(b) If (2, Y) r f~, then compute a subgradient s of ff at (2, Y). Set 

P +-- P N { ( x , y ) : l ( x , y )  <_ 0}, (2.14) 
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where 

l(x,  y) = ((x, y) - (~, 9))s + r 9). (2.15) 

The affine function l(x, y) in (2.15) is often called cutting function. If a point 
(u, v) E intf~ is available, this function can alternatively be defined as 

l(x,  y) = ((x, y) - (Yc, ~l))s, (2.16) 

where (5:, 9) is the unique intersection point of the line segment [(~, 9, (u, v)] 
with the boundary OFt of Ft, and s is a subgradient of r at (5~, !)). 
Cuts of type (2.16) are usually "deeper" than cuts of type (2.15). 

2.4. THE ALGORITHM 

Using notions and the three basic operations above we establish a branch and bound 
algorithm for solving Problem (P). 

ALGORITHM 1. 
Initialization 

Construct a polytope P satisfying P _D X x Y; 
Construct a conical partition C1, �9 �9 C~+1 of ~n (with common vertex y0, 
cf. Assumption (ii) and Section 2.1); 
Compute lower bounds #(Ci)  = #(Ci,  P ) ( i  = 1 , . . . ,  n + 1); 
Set C +- {C1 , . . . ,  Cn+l}; 
Compute an upper bound 2/by evaluating the function c at all points 
(.~(C), ~3(C)), C E C and at all points (~'(C), ~(C)), C E C 
satisfying (2.9) and (2.12), respectively. 
If no point of Ft M G is found, then set ~/= o0; 
Set 7~ +- {C E C : #(C)  < 7}; 
Set # +-- min{#(C) : C E 7~}; 
Choose C E T~ satisfying p(C)  = p; 
Set stop +- fa lse ,  k +-- 1. 

While stop = false do 
ff R = 0 then 

stop +-- true; (the point (x, y) with e(x, y) = 7 < c~ is optimal solution, 
or Problem (P) is infeasible if 7 = oo). 

else 
Perform a conical partition of C obtaining C1,. �9 �9 C~; 
Construct a polytope t5 satisfying P _D t5 _D f~ as described in (2.14); 
Compute lower bounds #(Ci) = #(Ci,/5),  (i = 1 , . . . ,  r); 
Update 7 by using all feasible points obtained while computing the lower 
bounds for the cones Ci, (i = 1 , . . . ,  r); 
SetC <-- C \ { c } u { c 1 , . . . , r } ,  
Set n +-- {C e C : #(C)  < 7;}, 
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Choose C �9 ~ satisfying #(C) = #. 
endif 
S e t P  +--/5, k +-- k + 1; 

endwhile 

To examine the convergence of the above algorithm, let us assign the index k to 
every set or quantity determined at iteration k. 

If the algorithm does not terminate after finitely many iterations, either yielding 
an optimal solution of Problem (P) or showing that the problem is infeasible, it 
must generate an infinite sequence {(.~, ~)k} C Pl\f~, where c((.~, .~)k) = #kVk. 
The convergence of Algorithm 1 is stated by means of the following results. 

THEOREM 2.2. If  the conical partition process is exhaustive, then every cluster 
point of the sequence {(~, 9)k} is an optimal solution of Problem (P). 

Proof Let (x*, y*) be a cluster point of {(Y:, ~)k}, and let {(:~, ~)q} be a subse- 
quence converging to (x*, y*). By passing to a subsequence if necessary, we can 
assume that (.~, 9) q --4 (x*, Y*), (where for each k, (.~, 9) k is the point defined 
by (2.10)-(2.11) corresponding to the cone Ck). Again, by passing to a suitable 
subsequence if necessary, we can assume that the corresponing sequence {cq} is 
decreasing, i.e., C q D cq+lvq. 

From the well-known theory of outer approximation algorithms (cf. e.g. Horst, 
Thoai, and Tuy 1987; Horst and Tuy, 1993 and references given there), it follows 
that (x*, y*) E fL  

On the other hand, by exhaustiveness of the conical partition process, {C a } 
converges to a ray. This implies that ~)* is the intersection point of OG with the 
ray passing through y*. Moreover, since (g,, ~)k �9 H k n Pk for every k we 
can conclude that ~)* belongs to the line segment [y0, y,]. Therefore, from the 
convexity of the complement G of G and the convexity of f~ it follows that 
(x*, y*) fq f~ f3 G which imples that (x*, y*) is feasible to Problem (P),  and hence 
limq---,oopq = #* = c(x*, y*) > c*, where c* is the optimal value of Problem (P),  
i.e. (x*, y*) is an optimal solution. [] 

In fact, to guarantee the convergence of Algorithm 1, the exhaustiveness of the 
conical partition process can be weakened as follows. At each iteration k > 1 we 
apply the following conical partition rule: 
(i) If/~k E [y0, 9k], then divide C k by an arbitrary partition rule, 

(ii) otherwise, divide C k by an exhaustive partition rule 

THEOREM 2.3. If  throughout Algorithm 1 the conical partition process is per- 
formed by the above rule, then every cluster point of the sequence {(s .~)k} is an 
optimal solution of Problem ( P). 

Proof Let (x*, y*) be any cluster point of {(s k } and let {Ca} be a decreas- 
ing subsequence of cones such that (:~, ~7) q --4 (x*, y *). If { cq } contains an infinite 
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subsequence generated by an exhaustive partition process, then, as shown in The- 
orem 2.2, (x*, y*) is an optimal solution. Otherwise, by construction, there exists 
an infinite decreasing subsequence satisfying 9 q �9 [y0, 9q] for all q, and there- 
fore, Y* �9 [y0, y.], i.e. y* �9 G (because we have y0 �9 ~ and Y* �9 OG). Since 
(x*, y*) �9 fl this implies again that (x*, y*) is feasible to Problem (P),  and hence 
it is an optimal solution. [] 

3. A Cutting Plane Algorithm 

3.1. THE ALGORITHM 

As mentioned in the introduction, in order to establish a cutting plane algorithm 
for solving Problem (P) we replace Assumption (ii) by the following assumption. 

(ii)' There is a point (x ~ yO) �9 into such that y ~ G and c(x ~ yO) < c*. 

(Here, as above, c* denotes the optimal solution of Problem (P)). In fact, this 
assumption means that the reverse convex costraint y �9 G is essential. A point 
(x 0, y0) can be found by a perturbation of an optimal solution of the convex 
program min{e(x, y) : (x, y) �9 f~}. When f~ is a polytope, and there exists a vertex 
(x o, y0) �9 f~ satisfying e(x ~ y0) < c 0, then Assumption (ii) I can be omitted. 

Before stating our algorithm we establish an optimality criterion for Problem 
(P). To this purpose, let us assume that the set f~ is given by (2.13) and the set G 
is explicitely given by 

G =  {y � 9  g(u) 0}, (3.1) 

where g is a continous quasi-concave function on ~r Further, define 

D = {(x,  U) e R '+n �9 (x ,y)  e n , y  �9 G}. (3.2) 

Let P be a polytope satisfying P ~ D. For each point w = (u, v) E fL let us 
denote by Y(P ,  w) the projection of the set {(x, y) : x, y E P, c(x, y) < c(u, v)} 
on the space of y-variables, i.e. 

Y ( P , w )  = {y" (3x E X ) ( x , y )  E P ,e (x , y )  <_ e(u,v)}. (3.3) 

The following optimality criterion for Problem (P) is closely related to an opti- 
mality criterion for canonical d.c. programs, cf. Tuy (1986), Horst and Tuy (1993). 

THEOREM 3.1. Assume that the feasible set D of Problem (P) is robust (in the 
sense that el(intD) = D, where cl(A) is the closure of a set A). Let P be a polytope 
satisfying P ~ D. Then a feasible point w* -- (u*, v*) of Problem (P) is an 
optimal solution if 

min{g(y) : y E Y (P ,  w*)} = 0. (3.4) 



342 REINER HORST AND NGUYEN VAN THOAI 

Proof. Assume that there exists a point (u, v) E D satifying c(u, v) < c(u*, v*). 
Let B be a ball around (u, v) such that c(x, V) < c(u*, v*) for all (x, y) E a .  
Since the set D is robust there exists a sequence (x q, yq) C intD converging to 
(u, v). This implies that there exists an index q0 such that (x q~ yqO) E intD f) B, 
i.e., g(yqo) < 0 and c(x q~ yqo) < c(u*~ v*). Thus, since P D D it follows that 
min{g(y) : (x,y) E Y(P,w*)} = min{g(y) : (x,y) e P,c(x,y) < c(u*,y*)} < 
min{g(y) : (x,y) E D, c(x, y) <_ e(u*, y*)} <_ g(yqo) < 0 which is a contradition 
to (3.4). [] 

Actually, in Theorem 3.1 the polytope P can be replaced by any closed set containing 
D. However, in order to establish an implementable algorithm for solving Problem 
(P) which is based on the optimality criterion (3.4), we shall construct iteratively 
a polytope P containing the feasible set D. 

The following decomposition algorithm for solving Problem (P) is established 
based on the main idea of the algorithm for solving a canonical d.c. program 
developed by Tuy (1986). 

ALGORITHM 2. 
Initialization 

Construct a polytope P satisfying P _3 X • Y; 
Compute (x ~ yO) E ~ + P  satisfying Assumption (ii)' 
(Note that we have yO ~ G, i.e. g(yO) > 0). 
Set w +-- (oo); c(w) +-- +oo, k +-- 1; stop +-- false; 

while stop = false do 
Solve the subproblem 

min{g(y) : y E Y(P, w)} (3.5) 

obtaining an optimal solution s and the optimal value 0. (See Section 3.2.1. 
below). 
If O > 0, stop +-- true (the feasible set D is empty, cf. the Corollary of, 
Theorem 3.3 below). 
If 0 = 0 and w ~ ( ~ )  then 

stop 4-- true (w is an optimal solution of Problem P, by Theorem 3.1.) 
else 

Compute the intersection point v of the set {y : g(y) --- 0} with the line 
segment Is, y0]; 
Compute a point u satisfying (u, v) E {(x, y) E P : c(x, y) < e(w)}. 
(cf. Section 3.2.2.); 
i f  (u, v) E f~ then 

w (u, v) 
else 

Construct a polytope/5 C P by using (u, v) as an approximation point, 
as outlined in Section 2.3 
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Set P +--/5; 
endif 

endif 
k + - k + l  

endwhile 

REMARK. Throughout Algorithm 2 two kinds of cutting planes are applied. The 
first one is used for the polyhedral approximation of the convex set f~, the second 
one defines level sets of the linear objective function c. Therefore, we call Algorithm 
2 a cutting plane algorithm. 

3.2. IMPLEMENTATION AND CONVERGENCE 

In this section we give some details of an implementation of Algorithm 2 and state 
its convergence properties. 

3.2.1. Solving Subproblem (3.5) 

The most expensive operation in Algorithm 2 is solving Subproblem (3.5) at each 
iteration. Below we show the way to solve these subproblems within an unique 
outer approximation in ]~n. Assume that the set {(x, y) E P : c(x, y) <_ c(w)} is 
described by a system of linear inequalities, 

A x  + B y  <_ b, x >_ O, y >_ O, (3.6) 

where A is an ( m x  p)-matrix, B is an (m x n)-matrix and b E R TM . The algorithm 
which we propose for solving Problem (3.5) is based on the following result. 

THEOREM 3.2. Let C = (z  E R TM : ATz  >_ 0, z > 0}, where A T is the transpose 
of A, and let E(C)  denote the set of  all extreme rays of C. Then the set Y (P ,  w) is 
defined by 

Y (P ,  w) = {y E ~_ : z ( b -  By)  > O,z E E(C)} .  

Proof. This is a classical result on projections of polyhedral sets. We present 
here a simple proof. We have Y(P ,  w) = {y E ]~_ �9 (3x E ]~P+ )By  < b - Ax} .  
By the well-known Farkas Lemma it holds, for each y E R~_, that {x E R~_ : A x  < 
b - B y }  # 0 if only if z(b - By)  > 0 for all z E C, i.e., z(b - By) >_ 0 for all 
z E E (C ) .  [] 

The following result is an immediate consequence of Theorem 3.2. 

COROLLARY (cf. Tuy, 1985; Thoai 1991). a. The set Y (P ,  w) is a polytope con- 
sisting of  all points y > 0 satisfying 

max{(By - b)z : - -ATz < 0, ez < 1, z > 0} = 0 (3.7) 
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where e E I~ m is a vector with all components 1. 
b. For each point 9 E R n \ Y ( P , w )  there exists a vertex ~ of the polytope 

{z : ATx  <_ O, ez <_ 1, z >_ 0} such that the affine function l(y) = ~By - ~b 
satisfies l(fl) > 0 and l(y) < O for y E Y (P ,  w). 

ALGORITHM 3 (For solving Subproblem (3.5)). 
Initialization 

Construct a polytope S satisfying S D_ Y ( P, w) and 
the vertex set V(S)  (See Remark (b) below); 
Set q +-- 1; stop +-- fa lse  

while stop = false do 
Select a point s satisfying 9(s) = min{9(y) : y E V(S)};  
Compute, by the simplex method, 

= max{(Bs  - b)z : - -ATz < O, ez <_ 1, z > 0}; 
if  ~ = 0 then 

stop 6- true (s is an optimal solution of Problem (3.5)). 
else 

Select a basic feasible point ~ with (Bs  - b)5 > 0; 
Construct the affine function l(y) = ~By - ~b; 
Set S 6-- S fq {y : l(y) < 0} and complete the vertex set V(S)  (cf. Remark 
(b) below); 
Se tq  +-- q +  1; 

endif  
endwhile 

REMARK. (a) As shown in Thoai (1991), Algorithm 3 terminates after finitely 
many iterations yielding an optional solution s of Problem (3.5). 

(b) At each iteration k of Algorithm 2 we have to solve a problem of the form 
(3.5). However, throughout Algorithm 2 these subproblems are solved successively 
within an outer approximation process. More precisely, the last polytope generated 
while solving the subproblem at iteration k(k >_ 1) is used as the first polytope for 
solving the subproblem at iteration k + 1. 

For calculating the vertex set of a polytope defined as intersection of a polytope 
with a halfspace, the methods discussed in Horst, Thoai, and de Vries (1988) and 
in Chen, Hansen, and Jaumard (1993) can be used, (see also Horst and Tuy, 1993). 

3.2.2. Computation of the Points u 

Let s be an optimal solution of Problem (3.5) with 9(s) < O, and let v be the 
intersection point of the set {y : 9(Y) = O} and the line segment [s, y0)]. (Since 
9(y ~ > 0 and the set {y : 9(Y) >- O} is convex, the point v is uniquely determined). 
Let 

v = s +  ,(yo _ s )  (1 > > 0) .  ( 3 . 8 t  
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A point u satisfying (u,v)  E {(x,y) E P :  c(x ,y)  < c(w)} can then easily be 
determined as follows. 

Each optimal solution s of Problem (3.5) satisfies 

max{(Bs - b)z : --AT z <_ O, ez < l, z >_ 0} = 0. 

Considering the dual of this linear program we see that 

min{A : - A x  + Ae > B s -  b,x > O,A >_ 0} = 0. 

Let (r,)~*) be an optimal solution of the dual program. Then it is easy to verify 
that the point (r, s) satisfies the system (3.6), i.e, (r, s) E {(x, y) E P : c(x, y) < 
c(w)}. (Note that, from the duality theory in linear programming, the point r is 
simply determined by the simplex tableau corresponding to an optimal solution of 
the primal program. For more details, see Thoai 1991. 

Finally, a point u satisfying (u, v) E { (x, y) E P : c(x, y) < c(w) } is computed 
by 

u = r + O(x ~ - r), (3.9) 

where the number 0 is defined in (3.8). 

3.2.3. Convergence 

The following convergence properties of Algorithm 2 can be derived from the 
results on solving canonical d.c. programming problems presented in Horst and 
Tuy (1993), (see also Thoai, 1993). 

THEOREM 3.3. Assume that the feasible set D of  Problem (P) is robust. Then, 
i f  Algorithm 2 does not terminate after finitely many iterations, it generates an 
infinite sequence {(u k, vk)}, every cluster point o f  which is an optimal solution to 
Problem (P). 

COROLLARY. Problem (P) is infeasible (i.e. the set D is empty) i f  and only i f  
Algorithm 2 terminates after a finite number o f  iternations because O > 0 

4. Illustrative Examples 

To illustrate the algorithms established in previous sections we take the following 
problem. 

min cPx + c~y 

s . t .Ax  + B y  <_ d 

r  ---- yi < O, (i = 1 , . . . , 3 )  

0 < xj  < 100, (j = 1 . . . , p )  

0 < yj < 100, (j = 1 . . . , n )  

g(y) < 0 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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where p = 4, n = 

B = 

G•O 
C 'rl' 

e l ( X )  ---~ 

= 

, 

0.488509 0.063565 0.945686 0.210704 
- 0 . 3 2 4 0 1 4 - 0 . 5 0 1 7 5 4 - 0 . 7 1 9 2 0 4  0.099562 
0.445225 -0.346896 0.637939 -0.257623 

-0.202821 0.647361 0.920135 -0.983091 

0.0 0.0 0.0 (3 .583525 
0.0 0.0 0.0 d = 0.337279 
0.0 0.0 0.0 ' 1.714630 ' 
0.0 0.0 0.0 0.479719 

(-0.022089, -0.76111 O, 0.861208, -0.348973),  

( o . o , 0 . 0 , 0 . 0 ) ,  
4 

0 . 2 ( 0 . 5  �9 2 , 
j=l  

4 

0.1 exp(O.15 + 0.1E 
j = l  

4 

r = 0.2 + ~ x j / j ,  
j = l  

3 

g(y)  = E y  j - 1 
j=l  

4.1. APPLICATION OF ALGORITHM 1 

For solving this test problem Algorithm 1 is modified as follows. At each iteration, 
instead of setting ~ +-- {C 6 C : #(C)  < ~ /}wese t~  +-- {C 6 C : #(C)  < ",/-e}, 
where e is taken as 1% o f f .  As a result, we obtain an e-optimA solution (x*, y*) in 
the sense that cPx * + c'~y * < cPx + cny - e for all feasible points (x, y) of Problem 
(P).  A first polytope p1 is define by p1 = {(x, y) : (x, y) satisfies (4.2), (4.4), 
(4.5)}. A point (u, v) 6 into is (1., 1., 1., 1., 100., 100., 100.) We choose y0 = 
(2., 2., 2.). Using the n-simplex [v I , v 2, v 3, v 4] = [e 1 , e 2, e 3, _1  (el -t- e 2 n t- e 3) ], 

where e i is the i - th  unit vector (i = 1,2, 3), we construct a conical partition 
{C1, C2, Ca, C4}, of tt 3, where for each i 6 { 1 , . . . ,  4} Ci, is the cone generated 
by 3 rays emanating from y0 and having the directions v ~, j # i, respectively. 

Iteration 1: 
Lower bound for c o n e  C1 : ~ ( C 1 ,  p1) = -17.885049, 
Lower bound for cone C2 :/~(C2, p1) __ -4.935237, 
Lower bound for cone 6'3 : #(C2, p1)  = _ 1.233849, 
Lower bound for cone C4 : #(C4,  p1) = +oe,  since the linear subproblem accord- 
ing to C4 is infeasible. 
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At this iteration no feasible point is found. While computing lower bound # (CI, p1 ) 
we obtain the point (~(C1), 9(C1)) = (0.0, 18.221018, 0.0, 11.510489, 1.0, 1.0, 1.0) 
which is infeasible. Computing the intersection point of 0f~ with the line segment 
[(.~(C1), 9(C1)), (u, v)] we construct a cutting function 

gl(X, y) = 8.295Xl + 16.591x2 + z 3 -q- 24.886 + 33.181x4 - 1.000yl 

-81.868 

The cone C1 is divided into two subcones by a conical bisection. A first feasible 
point is found at iteration 10. This problem is solved after 17 iterations, e-optimal 
solution is x* = (0.0, 1.590179,0.0,0.559156),y* = (7.019073,0.125630, 
1.131579), with cVx * + cny * = -1.405432 

4.2.  APPLICATION OF ALGORITHM 2 

For computing an e-optimal solution as mentioned above, Algorithm 2 is modified 
as follows. Whenever a feasible point w = (u, v) is found, the set {(x, y) E P : 
c(c, y) _< c(w)} is replaced by {(x, y) E P : c(x, !I) <_ c(w) - e} where e is taken 
as 1% of e(w). A first polytope p1 is defined by 

p1 = {(x,y) : (x, y) satisfies (4.2), (4.4), / /E r l } ,  

where y1 is a polytope in R 3 defined by 

y1 = {y E ]~3 : X l  +X2 +X3 ~ 105,Xl _> 10-5}. 

A point (x ~ , y0) satisfying Condition ( i i f  is x ~ = (0.0, 18.220982, 0.0, 11.510461 ), 
yO = (1377.263, 0.385, 12.188) with c(x ~ yO) = -17.885017. 

Iteration 1: 
An optimal solution of Subproblem (3.5) is s 1 = (0.000010, 0.000010, 0.000010) 
with 01 3 1 _ 1 < 0. = 1"~i=1 8i 

Intersection point (u 1, v 1) = (0.0, 0.977819, 0.0, 0.617703, 73.910081, 0.020686, 
0.654078) is infeasible (r 1) - v~ = 0.189258 > 0). Therefore, a cutting 
function is constructed: 
gl (X, y)  = X 1 --1- 0.5X 2 -q- 0.333333x3 + 0 . 2 5 x 4  --  Y3 --  0.20 

Iteration 2: 
An optimal solution of Subproblem (3.5) is s 2 = (0.00010, 0.000010, 0.2) with 
02 3 2 1 < 0 .  = I"~i=l 8i - -  

Intersection point (u 2, v 2) = (0.0, 0.891621, 0.0, 0.563250, 67.394623, 0.018863, 
0.786623) is i n f e a s i b l e  (l~2(~d 2) - v 2 ~ 0.104340 > 0). Cutting function: 
g2 (x, y) = 0.012320xl +0.006160x2 +0.004107x3 + 0 . 0 0 3 0 8 0 x 4  - -  Y2 - -  0.115976 

Iteration 3: 
An optimal solution of Subproblem (3.5) is s 3 = (0.000010, 0.115976, 0.2) with 
0 3 = 1 - i f -  1 < 0. 
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Intersection point (u 3, v 3) = (0.0, 0.284381,0.0, 0.179648, 21.495438, 0.120179, 
0.387103) is feasible. Therefore, set w = (u 3, v 3) with c(w) = -0.280930.  
. . .  

This problem is solved after 12 iterations. 
e-optimal solution: z* = (0.0, 1.582390, 0.0, 0.554026), y* = (6.936546, 
0.127426, 1.130901), with c(x*, y*) = -1.397713. 

Computational experiments on several types of test problems and a comparison of 
these two algorithms will be reported on an other occasion. 
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